

BLENDGUTACHTEN

Auftrag Nr. 3221955 Projekt Nr. 2022-3818

KUNDE: Voltgrün Energie GmbH

St.-Kassians-Platz 6 93047 Regensburg

BAUMAGNAHME: PV-Anlage Kronstetten, Schwandorf

GEGENSTAND: Reflexions-/Lichtgutachten

ORT, DATUM: Deggendorf, den 13.01.2023

Dieser Bericht umfasst 18 Seiten, 1 Tabelle, 3 Abbildungen und 3 Anlagen. Die Veröffentlichung, auch auszugsweise, ist ohne unsere Zustimmung nicht zulässig.

IFB Eigenschenk GmbH

Mettener Straße 33 DE 94469 Deggendorf Tel. +49 991 37015-0 Fax +49 991 33918 mail@eigenschenk.de www.eigenschenk.de Geschäftsführer:

Dr.-Ing. Bernd Köck Dipl.-Geol. Dr. Roland Kunz

Registergericht: Amtsgericht Deggendorf · HRB 1139 Umsatzsteuer-ID: DE131454012 Standorte:

IFB Hamburg IFB Landshut IFB München IFB Regensburg

IFB Eigenschenk + Partner GmbH Pesterwitz

Inhaltsverzeichnis:

1	ZUS	AMMENFASSUNG	4	
2	VOF	RGANG	4	
	2.1	Auftrag	4	
	2.2	Projektbearbeiter		
3	BEU	IRTEILUNGSGRUNDLAGEN	5	
	3.1	Allgemeine Beurteilungskriterien	5	
	4.2	Standortspezifische Berechnungsparameter	11	
		4.2.1 Emissionsbereich	11	
		4.2.2 Immissionsbereich	12	
5	BER	ECHNUNGSERGEBNISSE	13	
	5.1 Allgemein			
	5.2	Ergebnisse Bahnstrecke	14	
	5.3	Ergebnisse Autobahn A 93	15	
6	BEU	RTEILUNG DER BERECHNUNGSERGEBNISSE	16	
7	SCH	ILUSSBEMERKUNGEN	17	
8	LITE	RATURVERZEICHNIS	18	

Seite 3 von 18 zu Bericht für Auftrag Nr. 3221955

15

Tabelle

Tabelle 1:	Allgemeine Beurteilungskriterien	7
Abbildungen		
Abbildung 1:	Lageplan und Immissionsorte	11
Abbildung 2:	Darstellung der Reflexionen auf IPkt 004	14

Anlagen

Abbildung 3:

Anlage 1: Darstellung der Emissions- und Immissionsorte

Ergebnisse Autobahn A 93

Anlage 2: Daten vom Auftraggeber

Anlage 3: Ergebnisdarstellung der Blendsimulation

Seite 4 von 18 zu Bericht für Auftrag Nr. 3221955

1 **ZUSAMMENFASSUNG**

Mit den im vorliegenden Gutachten durchgeführten Berechnungen für die geplante PV-Anlage Kronstetten, Schwandorf wurden mittels der Software IMMI 2021, die durch die Anlage potenziell verursachten Lichtreflexionen auf die von der PV-Anlage westlich gelegenen Autobahn A 93 sowie die östlich verlaufende Bahnstrecke ermittelt und eingestuft. Die gutachterliche Bewertung bzw. Abwägung erfolgte ohne rechtliche Wertung.

Es wurden an den Verkehrswegen jene Reflexionen untersucht, welche in Fahrtrichtung Nord und Süd auftreten.

Laut Prognose treten für die Autobahn A 93 keine relevanten Blendungen, verursacht durch den geplanten Solarpark, auf. Für die Bahnstrecke treffen in Fahrtrichtung Nordost die Reflexionen von hinten, mit einem von der Fahrtblickrichtung abweichenden Einfallswinkel von mehr als 90° auf das Sichtfeld des Zugführers. Eine Blendwirkung im relevanten Sichtfeld des Zugführers kann damit für die Fahrtrichtung Nordost ausgeschlossen werden. Die ermittelten Reflexionsstrahlen treffen in Fahrtrichtung Südwest auf der Bahnstrecke mit einem Winkel von > 42° auf das Sichtfeld des Zugführers. Somit ist für den Schienenverkehr von keiner störenden Blendwirkung auszugehen.

Nach gutachterlicher Abwägung ist die geplante PV-Anlage unter den genannten Aspekten und bei Würdigung der speziellen Standortbedingungen als **genehmigungsfähig** einzustufen (vgl. Kapitel 7).

2 VORGANG

2.1 Auftrag

Die Voltgrün Energie GmbH beauftragte die IFB Eigenschenk GmbH, Deggendorf, mit der Erstellung eines Reflexionsgutachtens für die geplante PV-Anlage Kronstetten, Schwandorf. Grundlage der Auftragserteilung ist das Angebot Nr. 2224658 vom 15.12.2022.

Seite 5 von 18 zu Bericht für Auftrag Nr. 3221955

2.2 **Projektbearbeiter**

Bei Rückfragen zu vorliegendem Gutachten stehen Ihnen folgende Ansprechpartner zur Verfügung:

Katharina Feid M. Sc.
Projektleiterin
katharina.feid@eigenschenk.de

Katharina Sigl B. Sc. Sachbearbeiterin katharina.sigl@eigenschenk.de

3 BEURTEILUNGSGRUNDLAGEN

3.1 Allgemeine Beurteilungskriterien

In der Fachliteratur sind hinsichtlich der Beurteilung von Blendeinwirkungen noch keine belastungsfähigen Beurteilungskriterien validiert und festgelegt. Als Grundlage werden von verschiedenen Verwaltungsbehörden Kriterien, wie Entfernung zwischen Photovoltaikanlage und Immissionspunkt sowie die Dauer der Reflexionen und Einwirkungen, genannt. Für die Beurteilung der Blendungen auf Gebäude und anschließenden Außenflächen wird in Fachkreisen die von der Bund-/Länder-Arbeitsgemeinschaft für Immissionsschutz (LAI) veröffentlichte Richtlinie "Hinweise zur Messung, Beurteilung und Minderung von Lichtimmissionen" [1] vom 08.10.2012 herangezogen.

Die Auswirkung einer Blendung auf die Nachbarschaft kann demnach, wie der periodische Schattenwurf von Windenergieanlagen betrachtet werden. Schwellenwerte für eine entsprechende Einwirkdauer der Blendungen auf Gebäude und anschließende Außenflächen werden entsprechend der WEA-Schattenwurf-Hinweise [3] festgelegt. Als maßgebliche Immissionsorte, die als schutzbedürftig gesehen werden, gelten nach [1]:

- Wohnräume, Schlafräume
- Unterrichtsräume, Büroräume, etc.
- anschließende Außenflächen, wie z. B. Terrassen und Balkone
- unbebaute Flächen in einer Bezugshöhe von zwei Metern über Grund (betroffene Fläche, an denen Gebäude mit schutzwürdigen Räumen zugelassen sind)

Seite 6 von 18 zu Bericht für Auftrag Nr. 3221955

Kritische Immissionsorte liegen meist südwestlich und südöstlich einer PV-Anlage und in einem Umkreis von maximal 100 m zur PV-Anlage. Dahingegen brauchen Immissionsorte, die vorwiegend südlich einer PV-Anlage gelegen sind i. d. R. nicht berücksichtigt werden (Ausnahme: Photovoltaik-Fassaden). Nördlich einer PV-Anlage gelegene Immissionsorte sind für gewöhnlich ebenfalls als unproblematisch zu werten.

In Anlehnung an die WEA-Schattenwurf-Hinweise liegt eine erhebliche Belästigung durch Blendung im Sinne des Bundes-Immissionsschutzgesetzes (BImSchG) an den vorstehend genannten schutzwürdigen Nutzungen erst dann vor, wenn eine tägliche Blenddauer von 30 Minuten sowie eine jährliche Blenddauer von 30 Stunden überschritten werden. Hinsichtlich der Straßen-, Bahn- und Flugverkehrsflächen bestehen keine Normen, Vorschriften oder Richtlinien. Aus Verkehrssicherheitsgründen sollte in der Regel jegliche Beeinträchtigung durch Blendung vermieden werden.

Als Grundlage zur Beurteilung wurde ferner der "Leitfaden zur Berücksichtigung von Umweltbelangen bei der Planung von PV-Freiflächenanlagen" [2] herangezogen. Aus dem Leitfaden geht hervor, dass bei einer nach Süden ausgerichteten Photovoltaikanlage, bei tiefstehender Sonne (d. h. abends und morgens) bedingt durch den geringen Einfallswinkel größere Anteile des Sonnenlichts reflektiert werden. Reflexblendungen können somit im westlichen und östlichen Bereich der PV-Freiflächenanlage auftreten, die allerdings durch die in selber Richtung tiefstehenden Sonne überlagert werden.

Gemäß [1] werden nur solche Blendungen als zusätzliche Blendungen gewertet, bei denen der Reflexionsstrahl und die natürliche Sonneneinstrahlung um mehr als 10° voneinander abweichen. Es werden also nur solche Konstellationen berücksichtigt, in denen sich die Blickrichtung zur Sonne und auf das Modul um mehr als 10° unterscheidet.

Eine geringere Abweichung als 10° bedeutet, dass die direkte Sonneneinstrahlung der tiefstehenden Sonne aus der gleichen Richtung wie der Reflexionsstrahl auftrifft. Diese natürliche Sonneneinstrahlung ist signifikant größer als die Reflexionswirkung der PV-Anlage. Kritisch sind daher Blendungen, die direkt aufs Sichtfeld von Personen auftreffen. Das bedeutet, dass die Blendungen mit einem kritischen Blendwinkel direkt auf das menschliche Gebrauchsblickfeld für Sehaufgaben auftreffen. Der Fahrer hat dann keine Möglichkeit mehr, diese kritischen Blendungen durch ein leichtes Wegschauen auszublenden.

Seite 7 von 18 zu Bericht für Auftrag Nr. 3221955

Neben den vorstehend beschriebenen dominierenden Blendungen durch die direkte Sonneneinstrahlung können bei Verkehrsflächen (Straßen, Bahnstrecken) auch jene anlagenbedingten Reflexionen unberücksichtigt bleiben, bei denen der Reflexionsstrahl um mehr als 30° von der Hauptblickrichtung des Fahrzeugführers abweicht.

Der Reflexionsstrahl wird bei einer Abweichung von mehr als 30° von der Hauptblickrichtung nur peripher am Rande des Sichtfeldes wahrgenommen und bedingt i. d. R. keine störende oder gar gefährdende Blendung des Fahrzeugführers [3].

Tabelle 1: Allgemeine Beurteilungskriterien

Immissionsorte	Grundlaga	Allgemeine Beu	urteilungskriterien		
immissionsorte	Grundlage	Abweichwinkel	Richtwert		
Verkehrsstraßen, Bahnstrecke	LfU, 2012*	> 30°	-		
Schutzwürdige Nutzungen (Wohnräume, Büroräume oder Terrassen)	LAI, 2012	-	< 30 [min./Tag] < 30 [Std./Jahr]		

^{*}In Anlehnung

Seite 8 von 18 zu Bericht für Auftrag Nr. 3221955

3.2 Blendungen und Leuchtdichte

Die physikalische Größe der Leuchtdichte spielt im Zusammenhang mit der Blendung eine zentrale Rolle. Definiert ist die Leuchtdichte durch den Quotienten aus der Lichtstärke und der Fläche [4]. Die verwendete Einheit für die emissionsgebundene Größe ist [Candela pro Quadratmeter]. Das menschliche Auge ist in der Lage Leuchtdichten von 10⁻⁵ cd/m² bis 10⁵ cd/m² zu verwerten [5].

Blendung wird als ein Sehzustand definiert, der entweder aufgrund zu großer absoluter Leuchtdichte, zu großer Leuchtdichteunterschiede oder aufgrund einer ungünstigen Leuchtdichteverteilung im Gesichtsfeld als unangenehm empfunden wird oder zu einer Herabsetzung der Sehleistung führt [4]. Die Blendung hängt vom Adaptionszustand des Auges ab und entsteht daher durch eine Leuchtdichte, die für den jeweiligen Adaptionszustand zu hoch ist. Neben dem Adaptionszustand des Auges ist die scheinbare Größe der Blendlichtquelle bzw. deren Raumwinkel von Bedeutung sowie der Projektionsort der jeweiligen Blendlichtquelle auf der Netzhaut. Die Augen wenden sich häufig unwillkürlich direkt zur Blendlichtquelle hin, wenn eine solche seitlich auf die Netzhaut abgebildet wurde, wo sich die besonders blendungsempfindlichen Stäbchen befinden.

In der Normung zum Augenschutz wurde eine Leuchtdichte von 730 cd/m² für eine noch "annehmbare" d. h. blendungsfreie Betrachtung einer Lichtquelle angesetzt [4]. Diese Angabe wird unabhängig von der momentanen Adaptation (Anpassung an die im Gesichtsfeld vorherrschenden Leuchtdichten) des Auges gemacht.

Des Weiteren wird bei den Blendungen zwischen physiologischen und psychologischen Blendungen unterschieden [5]. Physiologische Blendungen treten auf, wenn Streulicht das Sehvermögen im Glaskörper des Auges vermindert. Bei der psychologischen Blendung entsteht die Störwirkung durch die ständige und ungewollte Ablenkung der Blickrichtung zur Lichtquelle [5].

Am Tag bei heller Umgebung treten Absolutblendungen ca. ab einer Leuchtdichte von 10⁵ cd/m² auf. Bei Absolutblendungen treten im Gesichtsfeld so hohe Leuchtdichten auf, dass eine Adaptation des Auges nicht mehr möglich ist. Da eine direkte Gefährdung des Auges eintreten kann, kommt es zu Schutzreflexen wie dem Schließen der Augen oder dem Abwenden des Kopfes [4].

Seite 9 von 18 zu Bericht für Auftrag Nr. 3221955

Gemäß der Quelle [5] ergeben sich für die Sehaufgaben des Verkehrsteilnehmers besondere Probleme, bei auffälligen Lichtquellen in der Nähe von Straßenverkehrswegen. Es können physiologische (Nichterkennung anderer Verkehrsteilnehmer oder von Hindernissen) und die psychologische Blendung (Ablenkung der Blickrichtung von der Straße) auftreten [5].

3.3 Blendung durch Sonnenlicht und deren Reflexionen an PV-Anlagen

Die Sonne besitzt eine Leuchtdichte von bis $1,6 \times 10^9$ cd/m² und bei niedrigen Ständen bei rund 3° über dem Horizont von ca. $0,3 \times 10^9$ cd/m². Bei diesen Leuchtdichten kommt es zu physiologischen Blendungen, mit einer Reduktion des Sehvermögens durch Streulicht im Glaskörper des Auges (Leuchtdichte bis ca. 10^5 cd/m²) oder zu Absolutblendung (Leuchtdichte ab ca. 10^5 cd/m²).

Aufgrund der hohen Leuchtdichte der Sonne kommt es bereits dann zu einer Absolutblendung, wenn durch ein Photovoltaikmodul auch nur ein geringer Bruchteil (weniger als 1 %) des einfallenden Sonnenlichts zum Immissionsort hin reflektiert wird [5].

Seite 10 von 18 zu Bericht für Auftrag Nr. 3221955

4 BERECHNUNGSPARAMETER

4.1 Allgemeine Berechnungsparameter

Grundsätzlich ändert sich der Sonnenstand jederzeit. Um eine aussagekräftige Bewertung abzugeben, wird das Berechnungsintervall im 1-Minuten-Rhythmus durchgeführt. Als Berechnungsgrundlage werden die Sonnenstände für das Jahr 2023 angewendet. Die Software IMMI 2021 berücksichtigt bei der Berechnung der auf die Erde auftreffenden Sonnenstrahlen die atmosphärische Refraktion. Für die Berechnungen werden alle Hindernisse (Zäune, Bepflanzungen, Mauern, Anhöhen etc.) zwischen der Photovoltaikanlage und dem Immissionsbereich berücksichtigt (falls relevant). Blendungen durch direkte Sonnenstrahlen (also keine Reflexionsstrahlen) werden bei der Beurteilung nicht berücksichtigt, da diese bereits zum gegenwärtigen Zustand vorhanden sind. Als Anforderungen für die Berechnung wurden die Rahmenbedingungen der LAI-2012-Richtlinie [1] herangezogen. Das heißt, dass bei der Ermittlung der Immissionen von folgenden idealisierten Annahmen ausgegangen wird:

- Die Sonne ist punktförmig
- Das Modul ist ideal verspiegelt, d. h. es kann das Reflexionsgesetz "Einfallswinkel gleich Ausfallswinkel" (keine Streublendung) angewendet werden
- Die Sonne blendet von Aufgang bis Untergang, d. h. die Berechnung liefert die astronomisch maximal möglichen Immissionszeiträume (gegebenenfalls werden bestimmte Parameter eingeschränkt betrachtet, wodurch sich der Rechenaufwand minimiert ohne, dass die Ergebnisse beeinflusst werden)
- Mindestwinkel von 10° zwischen Reflexions- und Sonnenstrahl

4.2 Standortspezifische Berechnungsparameter

4.2.1 Emissionsbereich

Die zu untersuchende PV-Freiflächenanlage liegt in Kronstetten im Landkreis Schwandorf in der Oberpfalz. Im Westen der Anlage verläuft die Autobahn A 93 und östlich die Bahnstrecke. Der Solarpark soll auf folgenden Grundstücken mit den Flur-Nrn. 134, 135, 136 sowie 138 (Gemarkung Kronstetten) errichtet werden (siehe Abbildung 1).

Abbildung 1: Lageplan und Immissionsorte

Die geplante Freiflächenanlage besteht aus insgesamt ca. 15.660 Modulen. Die elektrische Nennleistung der gesamten Anlage ist mit 9.082,8 kWp vorgesehen [6]. Der Anlagenstandort befindet sich auf einer bisher landwirtschaftlich genutzten Fläche.

Die Module sind gemäß den vorliegenden Informationen nach Südost (168° Nordazimut) ausgerichtet. Der Anstellwinkel der Modultische beträgt maximal 15° [6].

Seite 12 von 18 zu Bericht für Auftrag Nr. 3221955

Die Höhe der Aufständerung der Oberkante der Solarmodule liegt bei 2,70 m und die Unterkante bei 0,80 m über Geländeoberkante.

Der Standort der geplanten Photovoltaik-Freiflächenanlage befindet sich auf einer Höhenlage von 380 bis 393 m ü. NHN (alle Höhenangaben wurden aus dem Geländemodell der Bayerischen Vermessungsverwaltung übernommen).

4.2.2 <u>Immissionsbereich</u>

Als Immissionsort für mögliche Blendungen durch die geplante PV-Anlage wird die Bahnstrecke und die Autobahn A 93 betrachtet (vgl. Abbildung 1).

Die Immissionspunkte zur Betrachtung der Blendungen auf der Bahnstrecke befinden sich mittig auf einer Höhe von 3,50 m über GOK. Der horizontale Abstand zwischen den Immissionspunktpaaren beträgt $\Delta s = 40$ m. Es wurden an diesem Immissionsbereich 21 Immissionspunkte gesetzt.

Bei der Autobahn A 93 wurden auf der Fahrspur auf einer Höhe von 1 m [H1] und 2,5 m [H2] über GOK die Immissionspunkte positioniert. Diese wurden in Anlehnung an die Richtlinien für Anlagen von Stadtstraßen (Kapitel 6.3.9.3 RaSt) gewählt. Der horizontale Abstand zwischen jeweils zwei Immissionspunktpaaren beträgt $\Delta s = 40$ m. Am Immissionsort Autobahn A 93 wurden 76 Immissionspunkte gesetzt.

Der für die Begutachtung maßgebliche Abschnitt der Immissionsbereiche erstreckt sich in einer Höhe von 379 bis 388 m ü. NHN, als digitales Geländemodell wurden die Höhenpunkte mit einer Gitterweite von 5 x 5 m von der Bayerischen Vermessungsverwaltung herangezogen.

5 <u>BERECHNUNGSERGEBNISSE</u>

5.1 Allgemein

In den nachfolgenden Ergebnissen werden einzelne Werte der mit der Software "IMMI 2021" im 1-Minuten-Zyklus prognostizierten Blendungen auf die betrachteten Immissionsorte dargestellt. Die aufgeführten Blendungen beziehen sich auf eine mögliche Blendwirkung, bei einem festgelegten Winkelbereich der Ausrichtung sowie bei einer definierten Objekthöhe des Immissionsortes. Bei nachstehend genannten Ergebnissen ist zu beachten, dass während der Berechnung dauerhafter Sonnenschein angenommen wurde.

Die Berechnungsergebnisse können der Anlage 3 entnommen werden.

5.2 Ergebnisse Bahnstrecke

Bei der Blendsimulation ergeben sich für den Immissionsbereich Bahnstrecke an 7 von 21 Immissionspunkten Reflexionen. Die Reflexionsstrahlen treten in den Abendstunden von ca. 17:22 bis 19:35 Uhr auf. Im Jahreszeitraum treten die Reflexionen auf den Immissionsbereich hauptsächlich von Mitte März bis Ende September auf.

Die Reflexionsstrahlen treffen in Fahrtrichtung Südwest in einem Winkel von größer 42° auf die Hauptblickrichtung des Zugführers. In Fahrtrichtung Nordost ist der Winkel zwischen Reflexionsstrahl und Hauptblickrichtung größer 90° (siehe Abbildung 2). Somit ist für den Schienenverkehr von keiner störenden Reflexionswirkung auszugehen.

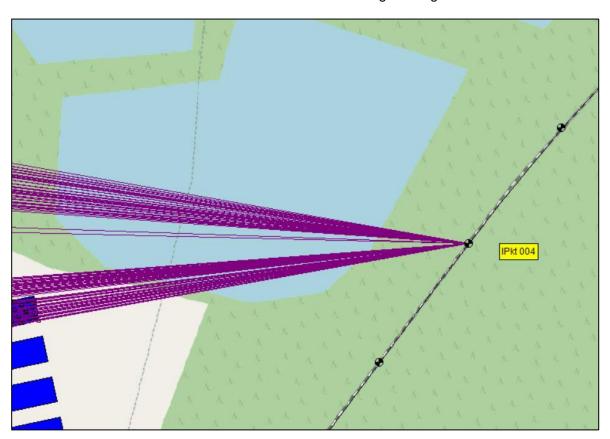


Abbildung 2: Darstellung der Reflexionen auf IPkt 004

5.3 Ergebnisse Autobahn A 93

Bei der Berechnung ergaben sich für diesen Immissionsbereich an keinem der Immissionspunkte Blendungen (siehe Abbildung 3).

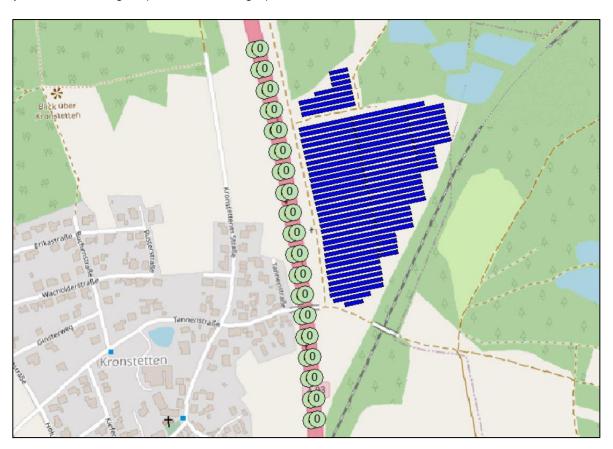


Abbildung 3: Ergebnisse Autobahn A 93

Seite 16 von 18 zu Bericht für Auftrag Nr. 3221955

6 <u>BEURTEILUNG DER BERECHNUNGSERGEBNISSE</u>

Für den Immissionsort Bahnstrecke wurden an der Fahrbahn in Fahrtrichtung Nordost und Südwest Reflexionen ermittelt.

In Fahrtrichtung Nordost treffen die Reflexionen von hinten, mit einem von der Fahrtblickrichtung abweichenden Einfallswinkel von mehr als 90° auf das Sichtfeld des Zugführers. Eine Blendwirkung im relevanten Sichtfeld des Zugführers kann damit für die Fahrtrichtung Nordost ausgeschlossen werden. Die ermittelten Reflexionsstrahlen treffen in Fahrtrichtung Südwest auf der Bahnstrecke mit einem Winkel von > 42° auf das Sichtfeld der Zugführer. Somit ist für den Fahrverkehr von keiner störenden Blendwirkung auszugehen.

Für die Autobahn A 93 wurden keine relevanten Blendungen verursacht durch Reflexionen an der geplanten PV-Freiflächenanlage ermittelt.

<u>Fazit</u>

Die vorliegenden Reflexionen sind aufgrund des hohen Abweichwinkels > 42° von der Hauptblickrichtung des Zugführers in Fahrtrichtung Nordost sowie Südwest aus fachgutachterlicher Sicht als nicht störend zu werten. Eine erhebliche Belästigung durch Blendung i. S. des § 5 BlmSchG ist für die Autobahn A 93 nicht zu erwarten.

Die geplante Anlage ist aus fachgutachterlicher Sicht als genehmigungsfähig einzustufen.

Seite 17 von 18 zu Bericht für Auftrag Nr. 3221955

7 <u>SCHLUSSBEMERKUNGEN</u>

Das vorliegende Gutachten wurde auf Basis der zur Verfügung gestellten Unterlagen und Informationen vom Stand Januar 2023 erstellt.

Im Zuge von detaillierten softwaretechnischen Berechnungen zur Ermittlung von Lichtreflexionen im Besonderen im Zusammenhang mit der geplanten Photovoltaikanlage können auf Grundlage vorliegender Planung/Unterlagen und der aktuellen Situation vor Ort, Reflexionen am Immissionsort Bahnstrecke festgestellt werden, wobei nach gutachterlicher Abwägung die geplante PV-Anlage als **genehmigungsfähig** einzustufen ist.

IFB Eigenschenk ist zu verständigen, sofern sich Abweichungen von der derzeitigen Planung oder örtliche Änderungen ergeben.

IFB Eigenschenk GmbH Dr.-Ing. Bernd Köck ^{1) 2) 3) 4) 5)}

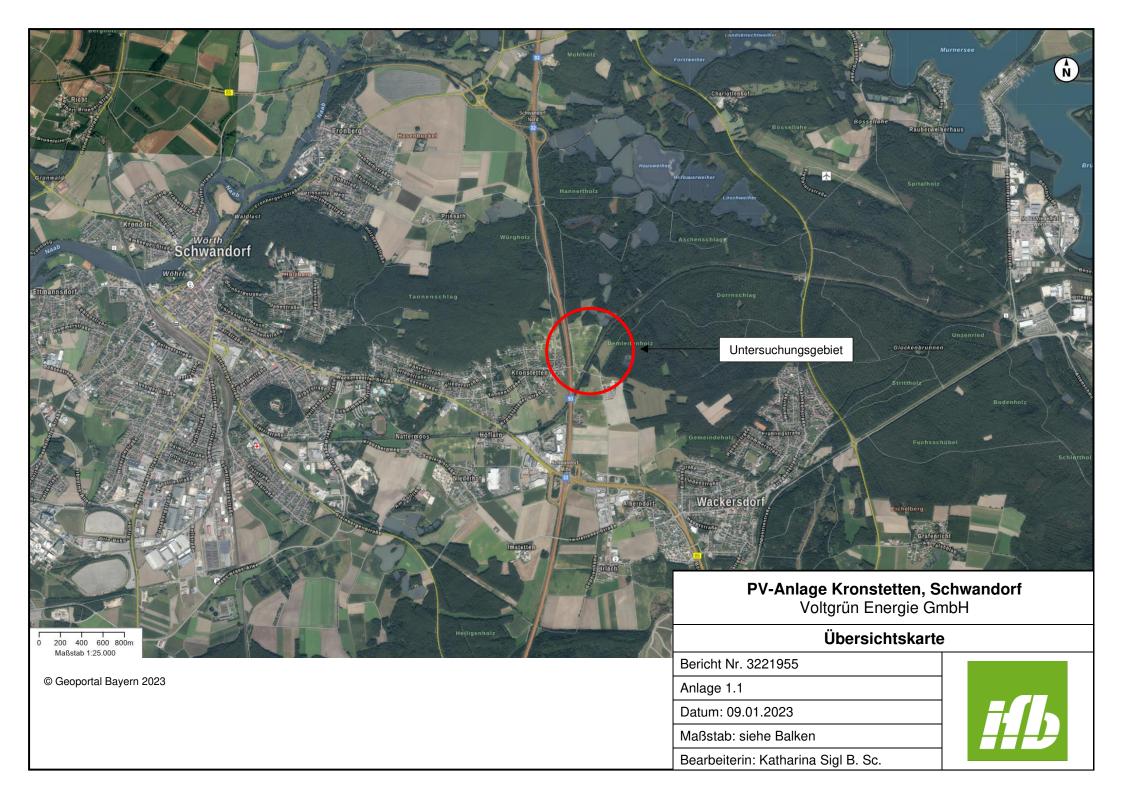
Geschäftsführer (CEO) Unternehmensleitung Katharina Feid M. Sc. Projektleiterin

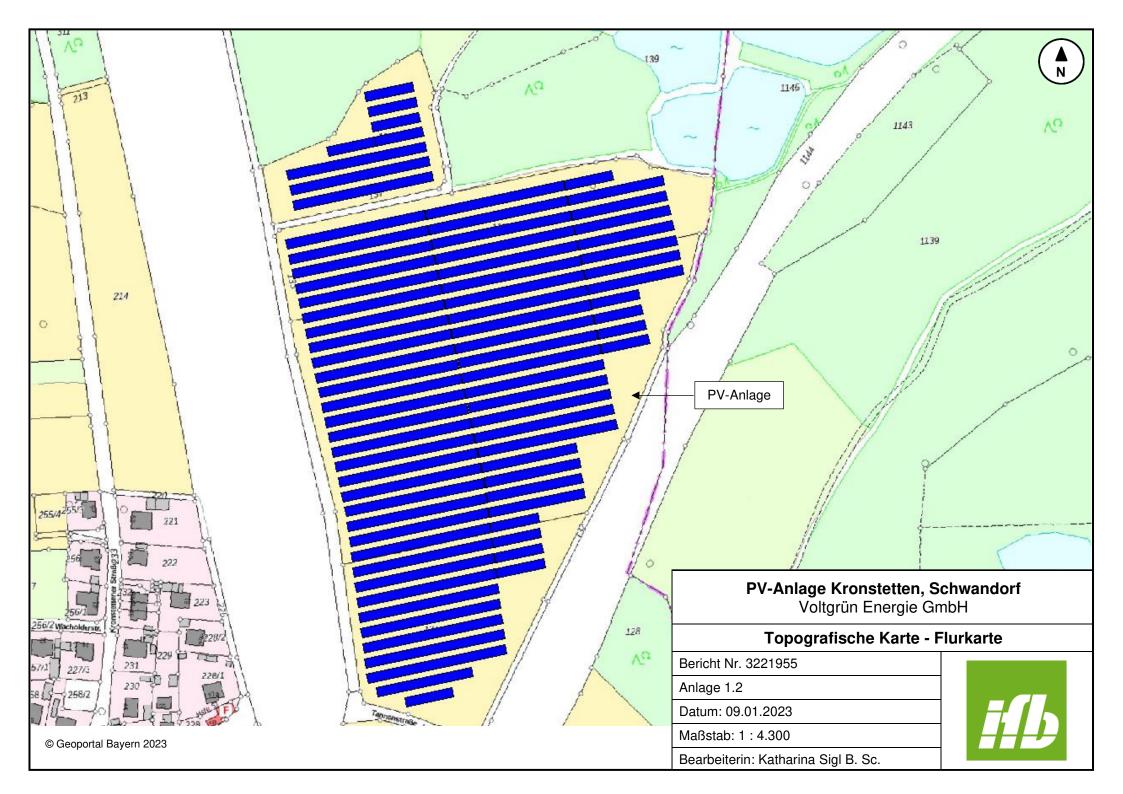
Katharina Sigl B Sc. Sachbearbeiterin

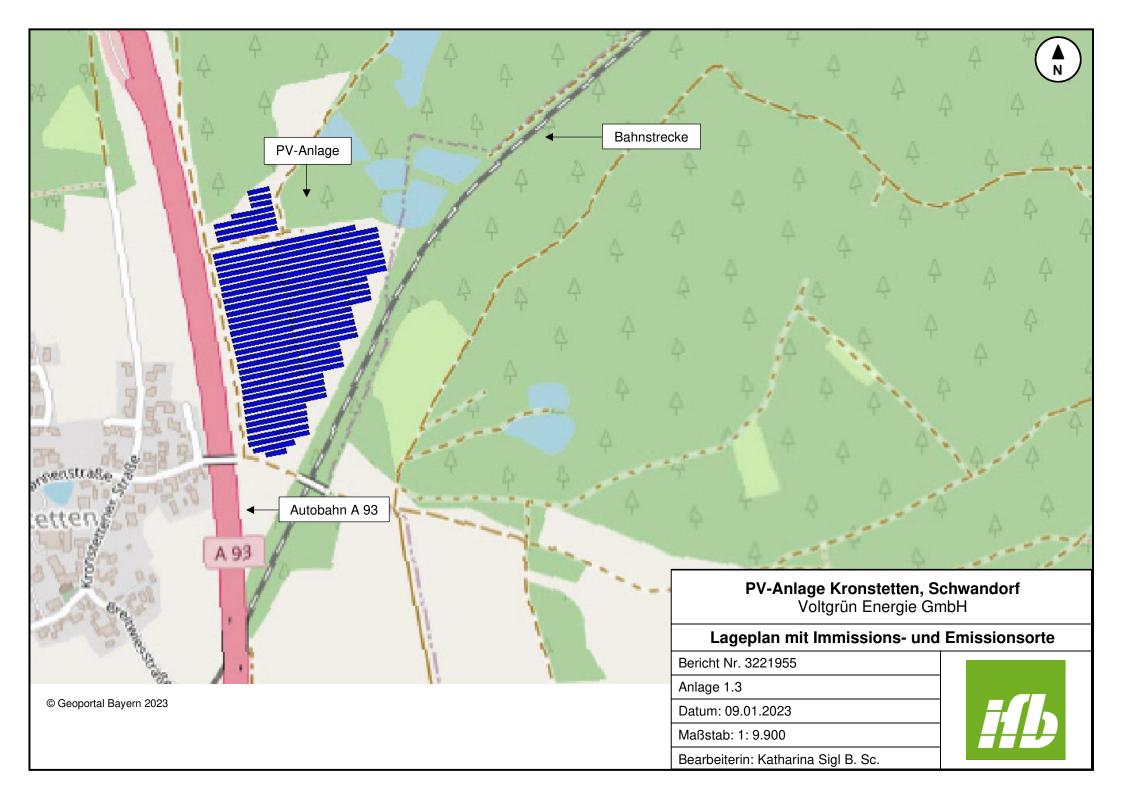
¹⁾ Öffentlich bestellter und vereidigter Sachverständiger für Historische Bauten (IHK Niederbayern)

²⁾ Nachweisberechtigter für Standsicherheit (Art. 62 BayBO)

³⁾ Zertifizierter Tragwerksplaner in der Denkmalpflege (Propstei Johannesberg gGmbH)

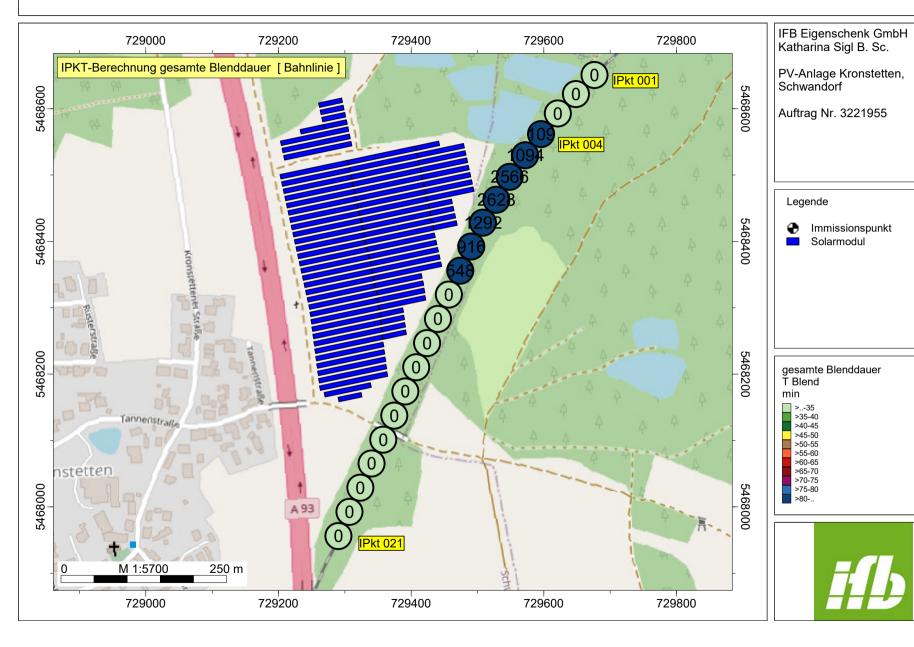

⁴⁾ Zertifizierter Fachplaner für Bauwerksinstandsetzung nach WTA (EIPOS)


⁵⁾ Sachkundiger Planer für Schutz und Instandsetzung von Betonbauteilen (BÜV/DPÜ)

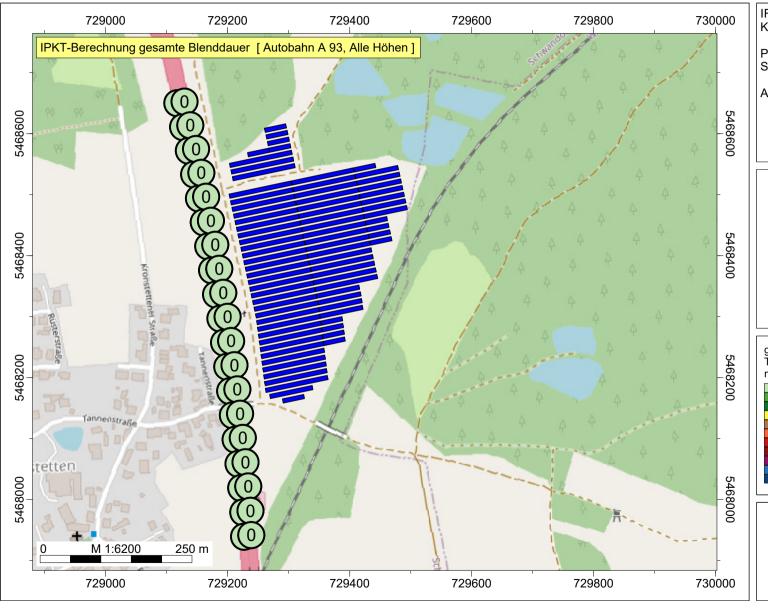


8 <u>LITERATURVERZEICHNIS</u>

- [1] Bund/Länder-Arbeitsgemeinschaft für Immissionsschutz (LAI) "Hinweise zur Messung, Beurteilung und Minderung von Lichtimmissionen"; Stand 08.10.2012.
- [2] Bayerisches Landesamt für Umwelt (LfU) "Lichtimmissionen durch Sonnenlichtreflexionen – Blendwirkung von Photovoltaikanlagen"; Stand: 17.10.2012.
- [3] Länderausschuss für Immissionsschutz "Hinweise zur Ermittlung und Beurteilung der optischen Immissionen von Windenergieanlagen" (WEA-Schattenwurf-Hinweise); Stand: Mai 2002.
- [4] Strahlenschutzkommission, "Blendung durch natürliche und neue künstliche Lichtquellen und ihre Gefahren, Empfehlung der Strahlenschutzkommission"; 17.02.2006.
- [5] Fachverband für Strahlenschutz e. V.; Rüdiger Borgmann, Thomas Kurz; "Leitfaden "Lichteinwirkung auf die Nachbarschaft"; 10.06.2014.
- [6] Modullageplan; erhalten per E-Mail am 15.12.2022.



PV-Anlage Kronstetten, Schwandorf

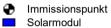


Firma:	IFB Eigenschenk GmbH	Auftrag Nr. 3221955	
Bearbeiter:	Katharina Sigl B. Sc.		
Projekt:	PV-Anlage Kronstetten, Schwandorf		

Kurze Liste - Fotovoltaik		Punktberechnung								
Fotovoltaik-Berechnung		Punktberec	Punktberechnung							
Bahnlinie		Einstellung:	Einstellung: Kopie von "Referenzeinstellung"							
Immissionspunkt		Gesamte	Anzahl	Mittlere	Tag max.	Maximale	Erste	Letzte	Tag 1.	Tag letzte
		Blenddauer	Blendtage	Blenddauer	Blendung	Blenddauer	Blendzeit	Blendzeit	Blendung	Blendung
		/min		/min		/min				
IPkt001	Bahnlinie 1 H 1N/O	0	0	0	-	0	-	-	-	-
IPkt002	Bahnlinie 2 H 1N/O	0	0	0	-	0	-	-	-	-
IPkt003	Bahnlinie 3 H 1N/O	0	0	0	-	0	-	-	-	-
IPkt004	Bahnlinie 4 H 1N/O	109	60	2	19.03.	3	17:25	19:14	19.03.	24.09.
IPkt005	Bahnlinie 5 H 1Nord	1094	140	8	15.04.	16	17:26	19:26	22.03.	20.09.
IPkt006	Bahnlinie 6 H 1Nord	2566	196	13	15.05.	21	17:22	19:28	16.03.	27.09.
IPkt007	Bahnlinie 7 H 1Nord	2628	174	15	29.05.	23	18:26	19:24	27.03.	16.09.
IPkt008	Bahnlinie 8 H 1Nord	1292	177	7	22.06.	13	17:38	19:20	25.03.	17.09.
IPkt009	Bahnlinie 9 H 1Nord	916	135	7	19.07.	10	18:52	19:21	15.04.	27.08.
IPkt010	Bahnlinie 10 H 1West	548	91	6	07.06.	9	19:10	19:35	07.05.	05.08.
IPkt011	Bahnlinie 11 H 1S/W	0	0	0	-	0	-	-	-	-
IPkt012	Bahnlinie 12 H 1S/W	0	0	0	-	0	-	-	-	-
IPkt013	Bahnlinie 13 H 1S/W	0	0	0	-	0	-	-	-	-
IPkt014	Bahnlinie 14 H 1S/W	0	0	0	-	0	-	-	-	-
IPkt015	Bahnlinie 15 H 1S/W	0	0	0	-	0	-	-	-	-
IPkt016	Bahnlinie 16 H 1S/W	0	0	0	-	0	-	-	-	-
IPkt017	Bahnlinie 17 H 1S/W	0	0	0	-	0	-	-	-	-
IPkt018	Bahnlinie 18 H 1S/W	0	0	0	-	0	-	-	-	-
IPkt019	Bahnlinie 19 H 1S/W	0	0	0	-	0	-	-	-	-
IPkt020	Bahnlinie 20 H 1S/W	0	0	0	-	0	-	-	-	-
IPkt021	Bahnlinie 21 H 1S/W	0	0	0	-	0	-	-	-	-

IMMI 2021 Seite 1

PV-Anlage Kronstetten, Schwandorf



IFB Eigenschenk GmbH Katharina Sigl B. Sc.


PV-Anlage Kronstetten, Schwandorf

Auftrag Nr. 3221955

